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The fully developed laminar flow in a helical circular pipe under the influence of both 
curvature and torsion is studied analytically. The solutions are obtained by the 
double series expansion method which perturbs the exact solution derived in this 
work for a twisted circular pipe. The perturbed parameters selected are dimensionless 
curvature K and dimensionless torsion 7.  Since the expanded governing equations and 
series solutions have been arranged in a compact form, the complete solutions can be 
computed by a systematic procedure on computer. In  addition, the accuracy of the 
solutions is only confined by the natural limitation of the series expansion method 
because no approximation was made in the governing equations. The ‘torsion 
number’ Tn which can be considered as the measure of the torsion effect that swirls 
the flow is defined Tn = 279, where W is the Reynolds number. The characteristics 
of the flow in the helical circular pipe are thus controlled by three parameters: W, 
Dean number K and Tn. The flow rate solution of the extended Dean equations of 
Germano (1989) is then found. The effects of finite curvature and torsion on the flow 
rate, axial velocity and secondary flow are also found. The inconsistency of torsion 
effect on the secondary flow between Wang (1981) and Germano (1982, 1989) is also 
quantitatively explained by the different coordinate systems used. 

1. Introduction 
Helical pipes are used extensively in various industrial applications, especially in 

cooling or heating devices. Owing to the secondary flow generated by the centrifugal 
force and twisting force, the rates of heat, mass and momentum transfer in helical 
pipes are usually much different from those in straight or toroidal pipes. Hence, the 
study of flows in helical pipes deserve attention. 

In  the literature, most of the theoretical studies have been concentrated on 
toroidal pipes without pitch (Berger, Talbot & Yao 1983; Ito 1987). Studies on the 
flow in helical pipes are relatively limited (Manlapaz & Churchill 1980; Wang 1981 ; 
Murata et al. 1981; Germano 1982, 1989; Chen & Fan 1986; Kao 1987; Xie 1990; 
Tuttle 1990). In those previous studies, it is concluded that the behaviour of the flow 
in a helical pipe can be approximated by that in a toroidal pipe if the pitch or torsion 
is small. However, inconsistent conclusions have been drawn for flow rate and 
secondary flow. 

Manlapaz & Churchill (1980) made a numerical calculation of the flow rate, in a 
helically coiled tube of finite pitch over the whole laminar flow region. They obtained 
an equation for determining the friction factor and concluded that the pitch effect is 
insignificant only for coils for which the increase in elevation per revolution of coils 
is less than the radius of the coil. However, one of the present authors (Chen & Fan 
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1986) derived the governing equations for the flow in a helical pipe with finite 
curvature and torsion using the non-orthogonal coordinate system as used by Wang 
(1981) and showed that the torsion effect on the flow rate can be ignored. Kao (1987) 
also concluded that the torsion effect is always small in all the circumstances of his 
results. This inconsistency reveals that both pitch and torsion, although they are 
usually adopted to describe the geometry of helical pipes, seem to be inappropriate 
to characterize the torsion effect on the flow rate. Considering loosely coiled pipes, 
Germano (1989) showed that the flow in a helical circular pipe depends not only on 
the Dean number K but also on a new parameter h / W ,  where h is the ratio of the 
torsion 7 to the curvature K of the centreline of the pipe and W is the Reynolds 
number. The dimensionless 7 and K are normalized by the radius a of the pipe. This 
new parameter is obtained from the derivation of the compact governing equations 
which are an extension of the Dean equations (Dean 1928) and is more conceptually 
useful to describe the flow in the helical pipe. However, the analysis is valid only for 
cases with small curvature and small torsion. 

One of the objectives of this work is thus to pursue a new dimensionless parameter, 
the ‘torsion number ’ Tn, which can be used as an estimation of the torsion effect on 
the flow in the helical pipe and is defined as 27%. Since the high-order terms of 
curvature and torsion are considered, unlike previous studies (Germano 1982, 1989; 
Kao 1987) the solutions obtained from the general governing equations by the double 
series expansion method are applicable to a wider range of curvature and torsion. 
The results show that the flow in a helical pipe is controlled by three parameters: 
Reynolds number W, Dean number K and torsion number Tn. 

For the secondary flow, the results of the torsion effect obtained by Wang (1981) 
and by Germano (1982) are different. Using a non-orthogonal coordinate system, 
Wang (1981) mentioned that both curvature and torsion play important roles in the 
flow and the torsion can be so dominant in some phenomena, for example, to even 
change a two-vortex secondary flow to a single vortex one. Introducing a 
transformation and rendering the governing equations for a helical circular pipe 
expressible in an orthogonal coordinate system, Germano (1982) showed that only 
the curvature can cause a first-order effect and the torsion effect is of second order. 
Kao (1987) used the Germano’s orthogonal coordinate system, and tried to settle 
these differences using series expansion and numerical methods. He indicated that 
the torsion produces a significant influence on the secondary flow pattern if the ratio 
of curvature to torsion is of order unity and in general the torsion effect is small, and 
the secondary flow usually has a two-vortex pattern. However, the mechanism of the 
torsion effect is still not clear. With a detailed comparison between the non- 
orthogonal and orthogonal coordinates of Wang (1981) and Germano (1982), 
respectively, Tuttle (1990) qualitatively stated that the order of the torsion effect on 
the secondary flow depends on the frame of reference of the observer. For the 
secondary flow represented by the Dean’s recirculating cells which are observed on 
the non-orthogonal coordinate system, Tuttle (1990) concluded that the torsion has 
a first-order effect. To give a more clear explanation of the torsion effect on the 
secondary flow, an exact solution of the governing equations established in the non- 
orthogonal coordinate system for a twisted circular pipe is also derived in this work. 

As in the study of Tuttle (1990), the present solutions are also expanded in a power 
series not only of dimensionless curvature K but also of dimensionless torsion T .  The 
primary solutions derived from the exact solution of the twisted circular pipe, as 
mentioned, after an appropriate transformation, can be shown the same as those of 
Tuttle (1990). The expanded governing equations and series solutions are rearranged 
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FIGURE I. Non-orthogonal helical coordinate system. 

in a compact form, which allows the axial velocity and stream function to be 
computed with a systematic procedure. With these solutions, the effects of finite 
curvature and finite torsion on the flow rate, axial velocity and secondary flow in a 
helical circular pipe can thus be realized clearly. 

2. Coordinate system and governing equations 
To derive the governing equations the non-orthogonal helical coordinate system as 

used by Wang (1981), shown in figure 1 ,  is again adopted. The centreline of the helical 
circular pipe is described by the position vector X ( s ) ,  where s represents the 
dimensionless arclength normalized by the radius of the helical pipe a. Along the 
centreline, the unit tangent, normal and binormal vectors are mutually orthogonal 
and denoted by T, N and B, respectively. Hence, an arbitrary point o can be 
expressed by the helical coordinate system ( r ,  8, s) which is constructed with the 
coordinates ( r ,  8) defined by the plane of N and B and the normalized arclength s is 
taken as the third coordinate along the axial direction of the centreline of the helical 
pipe. The radial distance r is measured from the centreline and the angle 8 is 
measured from the normal N in a counterclockwise direction. r is also normalized by 
the radius of the pipe a. 

Although the r- and s-coordinates and r- and 8-coordinates are mutually 
orthogonal, the 8- and s-coordinates are non-orthogonal except at the centreline of 
the pipe where the direction of s coincides with tangential vector T. Detailed 
discussion of the orthogonal and non-orthogonal helical coordinate system can be 
found in Chen & Fan (1986). 

Introduce the dimensionless velocity components u, v and w and dimensionless 
pressure p as 

a a U 

V V V 
u=-u, v = - v ,  w=-w, 

where U ,  I.' and W represent the physical velocity components in the r- ,  8- and s- 
directions, P is the pressure, v is the kinematic viscosity and p is the density. 

For steady, incompressible, fully developed laminar flow, (a/as) (u, v, w) vanishes, 
and (u, v, w) and p are independent of time. Furthermore, the axial pressure gradient 
ap/as is a given constant. Based on these, the governing equations are as follows 
(Chen & Fan 1986). 
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(i) Continuity equation 

au 1 av u K 
-+--+-+-(vsin0-ucos0) = 0; 
ar r a0 r m 

(ii) Navier-Stokes equations 
in the r-direction 

2 av 2T aw au vau v2 2T u-+- - -_-_ vw- (72r-Km cos 0) V2u-- - 
r2 a0 hmr a0 ar r 30 r h 

K C O S O  K sin 0 K~ cos 8 sin 0 2 ~ 7  sin 8 
m2 )'+ h3 w;  (2) 

in the @direction 

av v av vu Ksin8 27 
ar r a 0  r m hm 

u-+--+--- w2+-(u-vKrsin0)w = 

1 h2Kcos0 

(~'h)") 2r( T - )  
+ - v+- KCOSe-- w; 

(3) 

2 ~ ~ ~ r s i n  8 av  27 aw h2Ksin0 -+--+ 
+ m3 a0 hm ar rm4 

in the s-direction 

aw v a w  K KTrsin8 m2 
ar r 30 m hm h2m 

u- + - - + - (v sin 0 - u cos 0) w + ~ w2--(u-vKrsin0)w = 

where 

h2 = m2+r2r2, m = 1-KrCos8. 

Since the stream functions used in the literature (Wang 1981 ; Kao 1987 ; German0 
1989) are all confined to  the cases of small curvature and torsion, to  preserve the 
high-order terms of torsion and curvature in the governing equations, the stream 
function $ that satisfies the continuity equation without any simplification is 
redefined here as follows : 

( 5 )  
u=-- 1 v=--- 1 a$ 

rm a0' m ar ' 

Substituting the stream function for (u, v) as stated in ( 5 )  into (2)-(4) and eliminating 
the pressure terms (ap/ar and ap/a0) between (2) and (3) and (3) and (4), one obtains 
the following set of equations which are written in terms of the unknowns wh and $: 
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and 

where 

(7) 

The high-order terms for curvature and torsion are collected in the functions of Fl 
and F2.t When the curvature is small, the functions Fl and F2 can be neglected 
because their orders are higher than O(KO) and O ( d )  of the terms in (6) and (7),  
respectively. This can be achieved by taking applas = O ( d )  and 7 = O(d). It is noted 
that the orders of wh and $ can be obtained from the exact solutions of the twisted 
pipe appearing in the following section as wh = o(K-$ and $ = o ( K O ) .  Similar 
ordering arguments can be also seen in Kao (1987). 

The boundary conditions are 

wh=O,  $ = O ,  and -- "-0  at r = l .  (8) ar 

In  addition, other conditions for wh and $ are obtained from the fact that the 
velocity components u ,  v and w must be finite over the entire cross-section. 

To get the solutions of (6) and (7) satisfying (8), successive approximations to the 
solutions can be made by expanding both wh and $ as power series in curvature and 
torsion. Furthermore, such successive approximations start from the exact solution 
of the flow in a twisted pipe instead of the Poiseuille flow. This will be described in 
the next section. 

3. Exact flow solution for a twisted circular pipe 
A comparison among different types of pipe is displayed in figure 2. As seen in 

figure 2, the helical pipe the curvature of which vanishes is named the twisted pipe. 
The twisted circular pipe is axisymmetric because of its circular cross-section and 
u = 0 and a(u,v,w,p)/ae  = 0. The continuity equation as stated in (1) is hence 
automatically satisfied and the Navier-Stokes equations (2)-(4) can be simplified as 
follows : 

in the r-direction 
2 -+-vw+r2r(;) v2 27 = 0 ;  

r h  

a2w 1 aw 2r2raw r2 (--l)w= 3 
hs .  aP in the s-direction - + - - - - - - - 

ar2 r ar h2 ar h2 h2 

(9) 

It is difficult to solve these simultaneous partial differential equations (9)-( 11) 
directly. However, the solutions under the present non-orthogonal helical coordinate 
system can be obtained by a suitable transformation from those available for 
straight pipes. The results are 

t The details of the functions Fl and F2 can be requested from the authors, or the Journal of 
Fluid Mechanics Editorial Office. 
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and 

7 = 0  7 = 0  7 = 0.01 7 = 0.1 

Straight pipe Toroidal pipe Helical pipe Twisted pipe 
K = O  K = 0.1 K = 0.1 K = O  

FIGURE 2. Comparison among different types of pipe. 

The stream function for this case can be further expressed as 

As seen in figure 2, the twisted circular pipe can be obtained by twisting the wall of 
a straight circular pipe. Owing to the circular cross-section, there is no warping of the 
cross-section and the shapes of these twisted and straight pipes are the same. Hence, 
the flow in a twisted circular pipe is exactly the same as that in a straight pipe, for 
which no secondary flow is found in the laminar flow region. As a result, no torsion 
effect on the secondary flow can be observed for the twisted circular pipe. However, 
for a twisted pipe with different cross-sections, the above conclusion should be 
modified. As shown by previous studies (Todd 1977; Kotorynski 1986; Germano 
1989 ; Tuttle 1990), torsion has a first-order effect on the secondary flow for a twisted 
pipe with elliptical cross-section. 

The stream function in (14) denotes the rotation motion produced by the term 
7rap/as as stated in (10). This can be seen because of the use of the present non- 
orthogonal coordinate system. Although the twisting force produced in the twisted 
circular pipe due to the non-orthogonal helical coordinate system is only a virtual 
one, it is expected that the influence of this force will exist in the helical pipe. For a 
twisted pipe with a cross-section which is not axisymmetric (Germano 1989), the 
torsional rotation of the wall of the pipe pushes the flow and that is also an essential 
element of the twisting force. 

4. Double series expansion solution for a helical circular pipe 
To obtain the flow solution for a helical circular pipe, the double series expansion 

method is adopted in this work. The series solutions are expanded in both 
dimensionless curvature K and dimensionless torsion r. The successive approximation 
can be obtained based on the solution of twisted circular pipe as derived in the 
previous section. In order to preserve the high-order terms of curvature and torsion 
appearing in the governing equations (6) and (7),  tedious successive approximations 
need to be done. Accordingly, with the aid of symbolic manipulation on a computer, 
the solution of the dimensionless axial velocity wh and the stream function $ for the 
helical circular pipe can be assumed in a series form: 
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where the primary solutions woo and $oo, which are found as those of Tuttle (1990), 
can be determined from the exact solution of the twisted circular pipes as stated in 
(13) and (14) (woI = +oI = 0 f o r j  + 0 ) ,  say, 

Substituting (15) into (6) and (7) and collecting the terms of equal orders, one has 

6-1 1-2 

I-1 k-0 
-2x x wZk aw ( '-' & '-2-k)+H$) (i = 1,2 ,3 ,  .. . ,j = 0 , 1 , 2 , 3 , .  . .), (17) 

and 

( i = 1 , 2 , 3  ,..., j = O , 1 , 2 , 3  ,... ), (18) 

where 

and Hi!) and Hi;) denote the terms contributed by the high-order terms of curvature 
and torsion in (6) and (7). Although the detailed expressions for and Hi;) are too 
complicated to give here, the contributions of those terms have been completely 
included in the solutions presented herein. It is noted that wtI and $d5 vanish once the 
subscript indexes become negative. In  addition, the solutions wh and $ should satisfy 
(8) a t  the boundary, and from (15), 

(19) 

and wiI and the velocity components, u and v, computed from are finite over the 
cross-section. 

The solutions of (1  7) and (18) satisfying boundary conditions (19), say, wdI and $i,, 
can be determined by the method of separation of variables. After tedious 
manipulations, the general forms of wiI and $', used in the procedure of separation 
of variables, are found as 

w i I = 0 ,  0;  " = o .  a$ at r = I ,  
ar 

where n = 2i + j - 2k and q = i - 21. I and J are the greatest integers less than or equal 
to ij + i and #i, respectively. The functions EdjkZ and Gukz are the polynomials of the 
variable r ,  the coefficients for which can be determined by solving (17) and (18) under 
the boundary conditions (19). To calculate any additional wdI or $dj of the series as 
stated in ( 1 4 ,  the terms on the right-hand sides of (17) and (18) can be obtained from 
the preceding computations. The w6, and t,hi, and wh and $ of (15) are thus solved 
completely. 
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The range of solutions studied in this work includes the following orders of 
curvature and torsion, 

K1(70+'T4), K2(7'+ 'T4) ,  K3('To-+'f2),  K4 (70+7 ' ) .  (22) 
For the case when 7 vanishes, the solutions (wlo, wzo, @lo and llrz0) are reduced to 
those for the toroidal pipe (see figure 2), which have been proved to be as those 
obtained by Topakoglu (1967). Tuttle (1990) also solved the flow solution in the 
helical circular pipe up to the order of ~ ~ 7 ~ .  It can be shown that the present solutions 
are the same as those of Tuttle (1990) except the solutions of order K ~ T ~ ,  wS2 and $zz. 
Although the solutions can be obtained from Topakoglu (1967) and Tuttle (1990) up 
to the order of KV, owing to the incomplete treatment in dealing with the governing 
equations, the solutions of wZ2 and lCrzZi of Tuttle (1990) need to be revised. 

The advantages of these compact forms of (17) and (18) and the series solution of 
(20) and (21) are obvious. Substituting (20) and (21) into the left-hand side of (17) 
and (18), any terms of w6, and @$, (and thus wh and @) can be determined by a 
systematic symbolic operation procedure on computer. 

5. Results and discussion 
5.1. Flow rate equation 

Owing to the non-orthogonality of the coordinate system, care should be taken that 
the axial velocity w is not in the direction perpendicular to the ( r ,  @-plane where the 
flow passes through, except at the centreline of the pipe. As shown in figure 3, the 
component of axial velocity w which passes through this plane is mwh. Thus, the 
volume flux through the ( r ,  @-plane is defined as 

mwh dA 9 

where A is the area of the ( r ,  0)-plane of a helical circular pipe. 

be obtained as 
Using the solutions obtained from (15), the flow rate of the helical circular pipe can 

' = 1 +  - { -3 .0575~  10-2-5.2800x 10B-2+1.7280x 1039r4 
(:61 

- 
QS 

(5.6310 x 10-3-3.8895W-2-7.2574 x 103W-4+ 1.3504 x 105W-6) 

( - 5 . 8 4 0 2 ~  10-4+1.6444W-2+1.6604x lO3BP4 

+5.3798 x 105B-6-3.1624 x lO'B-')} 

+ - (1.1931 x lOp2+2.5863 x 109-2+ 1 . 4 2 0 9 ~  104&?-4 

-8.1866 x 105W-6-8.7340 x lo7&?-* 

+ - (-6.7179 x 10-3-6.21379-2+2.8824 x 102B-4+2.7359 x lo5%'-' 

(&J 

(:y 
- 1.0013 x lO9B-* + 1.6507 x 10IOW-'O ))I (24) 

t The details of wz2 and $zz are available on request from the authors, or from the Journal of 
Fluid Mechanics Editorial Office. 
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B 
I 

FIGURE 3. The relation between coordinate systems ( r ,  8,a) and ( r ,  8, a’). 

K 
I I 

K (9 = 20) 
I 1 

K X lo*(%? = 200) 

0 0.0625 0.125 0.1875 0.25 

0 0.0625 0.125 0.1875 0.25 

FIGURE 4. The influence of the Dean number K on the flow rate: 
-, Tn = 0 (7 = 0 ) ;  ---, Tn = 10. 

where Q, is the volume flux of a straight pipe computed with the same axial pressure 
gradient ap/as. The Reynolds number 93 is defined as 

The Dean number K and torsion number Tn are 

K = 2 ~ 9 ? ~ ,  Tn = 2793. 

From the solutions of the axial velocity wii (20), stream function $ij (21) and flow 
rate equation (24), it  can be concluded that the flow in a helical circular pipe is 
characterized by three parameters: Dean number K ,  Reynolds number W and 
torsion number Tn. 

The influence of 93, K and Tn on the flow rate are depicted in figures 4 and 5, 
respectively. These figures can be also used to evaluate the effects of curvature K and 
torsion r on the flow rate by appropriate adjustments. As shown in figure 4, if T n  
vanishes, the increase ofK (and hence the curvature K )  decreases the flow rate. A t  the 
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Tn - .  
I I 

T(W = 20) 
I I 

0 0.125 0.25 0.375 0.5 

0 0.025 0.05 0.075 0.1 
T ( 9  = 100) 

FIGURE 5. The influence of the torsion number Tn on the flow rate: 
-, w = 20; ---, w = 100. 

same value of K ,  the smaller value of W has a larger value of curvature K and 
therefore decreases the flow rate distinctly. In such cases, the role of high-order terms 
of finite curvature K appearing in the governing equations (2)-(4) on flow rate can be 
seen. The torsion effect on the flow rate is also studied for the case with Tn = 10. It 
is found that the flow rate in a helical pipe is smaller than that in toroidal pipe at  
small Reynolds number (with larger torsion T )  while it is nearly the same at W N 50. 
As the Reynolds number is higher than W - 50, the flow rate of helical pipe behaves 
with a slightly reverse tendency. 

The influence of the torsion number on the flow rate up to Tn = 20 is shown in 
figure 5. For smaller Reynolds number (9 = 20), the flow rate decreases as Tn 
increases especially for the helical circular pipe with high K .  In such cases, the effects 
of finite curvature and torsion are obvious. For higher Reynolds number (9 = loo), 
the flow rate increases slightly as Tn increases. In these cases, both the curvature and 
torsion are relatively small and the effect of high-order terms is not so important. 
From (24), it  is also shown that the torsion effect is enhanced as K increases. For the 
special case of curvature K = 0 (i.e. the Dean number vanishes), the torsion has no 
effect on the flow rate because the helical circular pipe is now a straight twisted pipe. 

By careful comparison among the terms in (24), those with W d 2 ,  W-4,  W-', W-' 
and W-l0  have distinct effect on the flow rate only when the Reynolds number W is 
small. When W > 200, however, the flow rate is mainly made up of the terms without 
multiplying any minus power of W and (24) can be simplified as 

2 

&= 1 + ( & y [  - 3 . 0 5 7 5 ~  10-2+5 .6310~  lo-'(%) - - 5 . 8 4 0 2 ~ 1 0 - ~ ( ~ ~ ]  
&€! 

+(LY[1 .1931  x 10-2-6 .7179~ lO-'(2y]. (25) 
576 
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As Tn vanishes, (25) can be further expressed as the flow rate solution for toroidal 
pipes, which is t8he same as that obtained by Dean (1928). Also, as suggested by Van 
Dyke (1978) with a graphical ratio test, the Dean's flow rate series for toroidal pipes 
is convergent up to the Dean number K FZ 586. That is, the region of validity of 
curvature K can be suggested as 

K < 586/2W2. 

For W > 200, as the curvature and torsion are small, the governing equations 
(6)-(7) can be simplified without loss of accuracy by neglecting the functions PI 
and F2 in (6) and (7). Hence, h and m can be approximated as 1, except that 
the coefficients of wh(awh/ar) and wh(awh/ae) are replaced by 2~ sin 6 and 
~ ( K c o s ~ - T ~ ~ ) / ~ ,  respectively. As a result, (6) and (7) are simplified as 

and (27) 

where the parameters wd and $, used by Dean (1928) for the loosely coiled pipe are 

From (27), (26) can be further expressed as 

which is exactly the same as the extended Dean equations of Germano (1989) for 
small curvature K and torsion 7 if the following transformations are made: 

Tn = KA/W, E = e+@, 
where A = T / K  and E is the polar angle used by Germano (1989). Consequently, the 
flow rate solution of the extended Dean equations of Germano (1989) ((27) and (29)) 
which has not been solved yet is simply (25). 

The expanded series equations for (26) and (27) can be obtained from (17) and (18) 
by neglecting the Hi;) and Hi;) terms. With appropriate transformations as stated in 
(28), the series solutions of w, and $, are the terms with the highest power of ap/as 
in wt, and $i, of (20) and (21), respectively. 

Although the approaches of Germano (1989) and the present work are different, 
both reach the same extended Dean equations. Based on the non-orthogonal 
coordinate system and the stream function defined, without using any coordinate 
transformation (Germano 1989), the present derivation is more general. The pseudo- 
stream function defined by Germano (1989) is shown to be a special case of (5) 
devised in the present work. 

To study the torsion effect, Germano (1989) introduced a parameter A/W to 
estimate the relative effect of torsion and curvature. However, the torsion number 
Tn as defined in this work can be employed to estimate purely the torsion effect. A 
similar parameter T = 793 has been also reported by Germano (1989) for a twisted 
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(4 f B  

Tn = 20 
(K = 0.25, T = 0.5) 

Tn = 0 
( K  = 0.25, 7 = 0)  

18 f B  

Tn = 20 Tn = 0 
(K = 0.01, 7 = 0) (K  = 0.01, '7 = 0.1) 

FIGURE 6. The influence of the torsion number Tn on the secondary flow patterns: (a)  1 = 20, 
K = 200; ( b )  W = 100, K = 200. 

pipe with elliptical cross-section. It seems to be reasonable to state that the presently 
defined torsion number Tn could be further used to estimate the torsion effect of 
helical or twisted pipes with different cross-sections. 

5.2. Secondary $ow patterns 
To explore the torsion effect on the secondary flow patterns, the velocities (u, v, w) in 
a non-orthogonal helical coordinate system ( r ,  8, s) can be rewritten in an orthogonal 
coordinate system ( r ,  8, s') used by Kao (1987) as follows : 

u' = u, v' = v+rrwh, w' = (2~)bnw,.  (30) 

The velocity components (u', v', w') are defined with respect to coordinates ( r ,  8,s') 
accordingly. The secondary flow pattern composed of the projected velocity vectors 
(u', v') can be visualized directly from experiment. The major difference between the 
non-orthogonal helical coordinate system ( T ,  8, s) and the orthogonal one ( r ,  8,s') is at  
the axes s and s'. The s-axis is not perpendicular to the (r,O)-plane except at  the 
centre point of the ( r ,  @-plane. However, the sf-axis is always perpendicular to the 
(r,8)-plane and its direction coincides with that of the tangential vector T of the 
centreline. The relations between ( r ,  8, s) and ( r ,  8, s') coordinates are shown in 
figure 3. 

Figure 6 shows the influence of the torsion number Tn on the projected-velocity 
vectors (u', v') (secondary flow) under different Reynolds numbers W. For W = 20, a 
pair of symmetrical vortices occurs when Tn = 0 and the vortices are twisted 
clockwise significantly when Tn = 20. Since the cross-section of helical pipes is 
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Tn = 0 
( K  = 0.25, 7 = 0) 

Tn = 20 
( K  = 0.25, 7 = 0.5) 

Tn = 0 Tn = 20 
(K = 0.01, 7 = 0) (K = 0.01, 7 = 0.1) 

FIGURE 7. The influence of the torsion number Tn on the axial velocity contour : (a) W = 20, 
K = 200; (b )  W = 100, K = 200. 

twisted counterclockwise as seen in figure 2, the twisting force rotates the vortices 
clockwise. The degree of tendency also depends on 9, which represents the inertial 
force of the flow, and torsion 7,  which represents the change of the geometry of the 
helical pipe. As W increases and K and Tn remain constant, the torsion effect becomes 
more insignificant. 

Kao (1987) observed that torsion can produce a large effect on the secondary flow 
if the ratio of the curvature to the torsion is of order unity. Although this is not 
shown quantitatively in figure 6, from the solution of stream function (15) it can be 
expected that the torsion effect on the secondary flow is enhanced as curvature 
increases. A similar phenomenon is also observed on the flow rate. 

5.3. Axial velocity contours 
The torsion swirls the flow about the centre of the cross-section of the pipe. Hence, 
the torsion effect on the axial velocity can be observed only when the axial velocity 
contour is off-centre or not axisymmetrical. That is, for a helical circular pipe, the 
influence of torsion exists only when the centrifugal force acts. This is also consistent 
with the flow rate equation (24). If K vanishes, no matter how large Tn is, the flow 
rate always equals 1. 

The contours of the axial velocity w’ for cases corresponding to figure 6 are shown 
in figure 7. For W = 20, although K is high, up to K = 200, it  is interesting to note 
that the contour of the axial velocity shifts slightly towards the inner wall of the pipe 
when Tn = 0. This phenomenon, similar to that observed by Larrain & Bonilla 
(1970) for a toroidal pipe can be also explained by the superposition of the present 
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(b) (C) 

FIGURE 8. The flow patterns of the present and Kao’s problem. (a) Present solution in non- 
orthogonal coordinate system. (b) Present solution in an orthogonal coordinate system. (c) Kao’s 
series expansion solution. ( d )  Kao’s numerical solution (3 = 200, K = 400 and Tn = 20). 

series solutions w,,, wzo, w3,, and w4,. As Tn increases to 20, the contours of the axial 
velocity are shifted to the upper-right region, which agrees with that of Kao’s 
numerical solutions. As .9 increases to 100, as would be expected, both the curvature 
and torsion effects on the axial velocity contours are not so obvious. 

5.4. Solutions of Kao’s problem 

The solutions of the velocity components computed by the different coordinate 
systems used by Kao (1987) and in the present work can be further studied in fig- 
ure 8. Figures 8 (a) and 8 ( b )  show the present results computed by the double series 
expansion method. They are expressed in the non-orthogonal coordinate system used 
by Wang (1981) and the present work and in the orthogonal coordinate system used 
by Germano (1982, 1989) and Kao (1987). For a consistent comparison, the axial 
velocity in figure 8 ( a )  has been multiplied by a factor ( 2 ~ ) i  to make the same scale 
as w‘, and the projected velocity vectors in figure 8 ( a )  and 8 ( b )  have also been 
adjusted to the same scale as those of Kao (1987). 

To see the difference between the computations based on different coordinate 
systems, it is better to start with the axial velocity w and its components. As seen 
in figure 3, the axial velocity w of the non-orthogonal coordinate system (r,  8, s) can 
be divided into two components, say, mw,, and w w h ,  The component mwh which is 
directed perpendicularly to the ( r ,  @-plane is simply the axial velocity w’/(~K)$ 
defined in the orthogonal coordinate system ( r ,  8, s’) (Germano 1982, 1989; Kao 
1987). For the cases studied in figure 8, since the curvature and torsion are small 
(K = 0.005 and 7 = 0.05), mwh is nearly the same as w and the difference between 
the axial velocity contours of figures 8(a)  and 8 ( b )  is negligible. 

The component 7rwh on the (r,8)-plane plays the role of part of the angular 
velocity v‘. Because the axial velocity w is much larger than the velocities u and v, 
the component 7rwh has a profound influence on the calculation of the angular 
velocity v’ and the secondary flow as seen in figures 8 (a) and 8 (b ) .  The secondary flow 
expressed in the non-orthogonal coordinate system ( r ,  8, s) (figure 8 a) shows a single 
strong vortex which rotates clockwise. Wang (1981) observed this and stated that 
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the torsion produces a first-order effect. However, after adding the counterclockwise 
angular velocity component rrwh onto the projected velocity vectors (u, w) to 
compose the secondary flow in the orthogonal coordinate system ( r ,  9, s’) (figure 8 b ) ,  
a pair of weak vortices occurs and, as mentioned by Germano (1982), the torsion 
effect on the secondary flow is only of second order. The inconsistency of the torsion 
effect on the secondary flow between Wang (1981) and Germano (1982) due to the 
different coordinate systems used is thus quantitatively explained. This also confirms 
the qualitative description of Tuttle (1990). 

Figures 8 ( c )  and 8 ( d )  are Kao’s (1987) results obtained by a single series expansion 
method and numerical method, respectively. The axial velocity contours of w’ and 
the secondary flow in figure 8 ( d )  by a numerical method are nearly the same as those 
in figure 8 ( b )  obtained by the present study. Since Kao (1987) expanded the series 
only with K ,  the results of figure 8(d )  should be reasonable as compared with those 
of figure 8 (c) .  

6. Conclusions 
Using the exact flow solution derived for a twisted circular pipe, the solution for 

a helical circular pipe has been successfully obtained by the double series expansion 
method. Since the high-order terms of the curvature K and torsion 7 are considered 
in the governing equations, the solutions are also applicable to cases with finite 
curvature K and finite torsion T .  Because the governing equations and series solutions 
for each expansion order are written in compact forms, the complete series solution 
can be computed by a systematic procedure on computer. 

From the flow rate equation, it is concluded that the flow in a helical pipe is 
governed by three parameters: Reynolds number W ,  Dean number K and torsion 
number Tn. The torsion number, Tn = 279, induced by the torsion makes the flow 
different from that in a toroidal pipe. In general, an increase of K decreases the flow 
rate and enhances the torsion effect on the flow. The variation of Tn has a significant 
effect on the flow rate and the secondary flow, especially when W is small. For a helical 
circular pipe, the torsion effect makes the flow rotate in a direction opposite to the 
torsion. In addition, the influence of torsion depends on the cross-section geometry 
of the helical pipe. 

When 9 > 200 and curvature and torsion are small, the general governing 
equations are reduced to the extended Dean equations for a helical pipe as stated by 
Germano (1989), which are dominated by K and Tn only. The flow rate solution of 
the extended Dean equations is also presented. The inconsistency of the torsion effect 
on the secondary flow between Wang (1981) and Germano (1982, 1989) can be 
quantitatively explained by the different coordinate systems used. 

With the achievements of the present work, the approach can be further extended 
to deal with the fully developed forced-convective heat transfer to viscous flow in a 
helical circular pipe especially for cases with finite curvature and finite torsion. This 
will be given in a subsequent report. 
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